
High efficient performance of DFA for robust refiltering operation on parallel process
in Packet Inspection

1N. Kannaiya Raja and 2Dr. K. Arulanandam
1A.P/CSE Dept.Arulmigu Meenakshi Amman College of Engg, Thiruvannamalai Dt,

2Professor & Head, Dept. of CSE, Gnanathipathy Tulsi Jain Engineering College, Vellore.

Abstract—Multi-pattern string matching remains a major
performance bottleneck in network intrusion detection and
anti-virus systems for high-speed deep packet inspection (DPI).
Although Aho-Corasick deterministic finite automaton (AC-
DFA) based solutions produce deterministic throughput and
are widely used in today’s DPI systems such as Snort [1]
and ClamAV [2], the high memory requirement of AC-DFA
(due to the large number of state transitions in AC-DFA)
inhibits efficient hardware implementation to achieve high
performance. Some recent work [3], [4] has shown that the
AC-DFA can be reduced to a character trie that contains only
the forward transitions by incorporating pipelined processing.
But they have limitations in either handling long patterns or
extensions to support multi-character input per clock cycle to
achieve high throughput. This paper generalizes the problem
and proves formally that a linear pipeline with H stages can
remove all cross transitions to the top H levels of a AC-
DFA. A novel and scalable pipeline architecture for memory-
efficient multi-pattern string matching is then presented. The
architecture can be easily extended to support multi-character
input per clock cycle by mapping a compressed AC-DFA [5]
onto multiple pipelines. Simulation using Snort and ClamAV
pattern sets shows that a 8-stage pipeline can remove more
than 99% of the transitions in the original AC-DFA. The
implementation on a state-of-the-art field programmable gate
array (FPGA) shows that our architecture can store on a single
FPGA device the full set of string patterns from the latest
Snort rule set. Our FPGA implementation sustains 10+ Gbps
throughput, while consuming a small amount of on-chip logic
resources. Also desirable scalability is achieved: the increase
in resource requirement of our solution is sub-linear with the
throughput improvement.

Keywords - Deep packet inspection; DFA; FPGA; pipeline;
string matching;

I. INTRODUCTION

Deep packet inspection (DPI) systems (e.g. Snort [1]
and ClamAV [2]) are an effective mechanism for detecting
various network threats such as intrusion, virus and spam.
The functions of DPI systems rely on multi-pattern string
matching which scans the input stream to find all occur-
rences of a predefined set of string-based patterns rather
than a single pattern [6], [7]. Due to the explosive growth
of network traffic, multi-pattern string matching has been a
major performance bottleneck in DPI systems which have

to scan the incoming traffic in real time on fast links (e.g.
10 Gbps Ethernet and beyond) [8], [9]. For example, it has
been reported that the string matching time accounts for
40% to 70% of the Snort running time [10]. Some existing
solutions employ a number of identical instances of the
basic engine to process multiple input streams so that the
aggregate throughput is increased [9], [11]. But it remains
a challenge to improve the per-stream throughput as the
worst case when there is only one single stream. Though
it is possible to split a stream into several sub-streams with
partial overlap among the sub-streams, additional complexity
is introduced in scheduling, buffering, and ordering [12].
Simple and efficient hardware-based multi-pattern string
matching engines become a necessity for high-speed DPI
systems [6]. However, following requirements must be met
for the hardware-based solutions to be efficient and practical:

1) Deterministic throughput: To keep the DPI system it-
self to be robust, the string matching engine should preserve
high throughput independent of the characteristics of the
input stream or of the pattern set [13], [14]. Aho-Corasick
deterministic finite automaton (AC-DFA) based solutions are
thus preferred over those heuristic-based schemes [15] in
most of today’s string matching engines, as the worst-case
processing time complexity of AC-DFA is linear with the
length of the input stream [6].

2) Low memory requirement: The size of the pattern
sets in many DPI systems is increasing rapidly. Those
large pattern sets can require enormous amount of memory,
which has to be placed off-chip. The low speed to access
large (external) memory becomes a major bottleneck of the
string matching engine. Hence it has recently been an active
research topic to reduce the memory requirement for AC-
DFA so that it can be fit in the on-chip memory to minimize
the memory access time [14].

3) Dynamic update: Since the pattern set in DPI systems
is frequently updated (by adding or removing patterns), the
multi-pattern string matching engine should support dynamic
updates without major performance degradation. Such a
requirement can be very critical for some urgent events such

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

10 ISSN : 0975-8283

as a new virus breakout. Hence memory-based architectures
are usually preferred over purely logic-based solutions [15].

4) Supporting all types of strings: The string patterns in
DPI systems such as Snort and ClamAV are specified not
only in ASCII or English alphabet, but also as binary or
hexadecimal strings. This results in a larger problem space
than the traditional string matching problem, since each
character can represent 256 distinct values. As a result, those
schemes to reduce the memory requirement by character
encoding such as converting all characters into lower cases
[3] become infeasible or less effective for DPI systems.

5) Implementation cost: When implemented in hardware,
the overall resource usage of the string matching engine
should be predictable and minimized. A string matching
engine usually operates together with other DPI processing
engines such as the packet header classifier [16] and regular
expression matching engine [17] on the same chip. High
implementation cost can affect the practical performance [6]
and limit the scalability of the overall system.

To the best of our knowledge, none of the existing
hardware-based solutions has met all the above require-
ments. Taking advantage of pipelining and parallelism, this
paper proposes a memory-based multi-pipeline architecture
for high-speed, low-cost multi-pattern string matching. We
make the following contributions:

• Motivated by recent work on using pipelining to reduce
the transition edges in a AC-DFA [3], [4], we generalize
the problems and prove formally that a linear pipeline
with 0 < H ≤ L stages where L denotes the maximum
pattern length, can remove all cross transitions to the
top H levels of a AC-DFA. Experiments with real-
life pattern sets show that most of the cross-transitions
arrive at the first few characters of the patterns which
can be sufficiently removed by setting H = 8. Unlike
the previous pipelined solutions [4], our work removes
the limitation of the pattern length that is supported.

• Our pipeline architecture is simple and is easily exten-
sible to support multi-character input per clock cycle
by mapping a compressed AC-DFA [5] onto multiple
linear pipelines. This leads to multiplicative improve-
ment in sustained per-stream throughput, while the
increase in resource requirement is sub-linear with the
throughput improvement.

• FPGA implementation results show that, our archi-
tecture can store on a single FPGA device over 9K
string patterns from the latest Snort rule set. It sustains
10+ Gbps throughput, while consuming only 10% of
the on-chip logic resources. As far as we know, this
work is the first memory-based FPGA implementation
for multi-pattern string matching that supports the full
set of Snort string patterns while sustaining 10+ Gbps
throughput.

The rest of the paper is organized as follows. Section II
gives a brief review of the related work on multi-pattern

string matching and revisits the AC-DFA algorithm. Section
III analyzes the effectiveness of pipelining from both theo-
retical and experimental points of view. Section IV discusses
the extension to support multi-character input per clock
cycle. Section V presents our multi-pipeline architecture.
Section VI evaluates the performance of the implementation.
Section VII concludes the paper.

II. BACKGROUND

Pattern (string) matching is a classical problem and has
been studied in various contexts [6], [7]. For clarity, we
define the terminology used throughout this paper:

• Pattern / String: pattern matching is a broader problem
than string matching where the patterns are specified as
fixed strings. However, in this paper a “pattern” refers
only to a string-based pattern, and the terms “pattern”
and “string” will be used interchangeably within this
paper.

• Multi-pattern string matching is a specific type of string
matching used in DPI systems to search an input stream
for a set of patterns rather than a single pattern.

• Pattern length is defined as the number of
characters in a pattern. As the basic element of a string,
each character consists of 1 byte i.e. 8 bits, and
can be specified in either ASCII or binary formats.

• The size of a pattern set is defined as the number of
patterns in it.

A. Related Work

Although string matching is a classic problem for decades,
multi-pattern string matching has sparked renewed research
interest due to its application in DPI systems [6]. Some
excellent surveys can be found in [6], [18]. Based on
the platform for implementation, the state-of-the-art solu-
tions can be generally divided into three categories: multi-
core processor -based [9], [11], [19], application-specific
integrated circuit (ASIC) -based [5], [8], [12], [20] and
field programmable gate array (FPGA) -based [4], [15],
[21], [22] solutions. Each of them has its own pros and
cons. Advanced multi-core processor -based solutions [9],
[11], [19] have recently stepped in as a major player for
high performance string matching. They can improve the
aggregate throughput dramatically by using a large number
of threads to process multiple input streams in parallel. On
the other hand, it has been observed that the memory access
pattern in string matching is irregular [9], [11]. This results
in relatively low per-stream throughput which is critical
for real-time network traffic processing in the worst case.
Though it is possible to split an input stream into several
sub-streams with partial overlap among the sub-streams,
additional complexity is introduced in scheduling, buffering,
and ordering [12]. ASIC-based solutions [5], [8], [12], [20]
provide impressive high per-stream throughput while their
applicability is limited by the high implementation cost and

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 11

low reprogrammability. Combining the flexibility of soft-
ware and the near-ASIC performance, FPGA technology has
long become an attractive option for implementing various
real-time network processing engines [15], [16], [23]. State-
of-the-art FPGA devices such as Xilinx Virtex-6 [24] provide
high clock rate and large amounts of on-chip dual-port
memory with configurable word width. Hence this paper
considers FPGA as the target platform for implementation,
though the proposed architecture can also be implemented
efficiently in ASIC.

The majority of existing FPGA-based string matching
engines are based on purely logic [21], [22], [25]. Although
they provide desirable high performance, it takes consid-
erable time to resynthesize the design and reprogram the
FPGA device. In case of pattern updates, the hardware-
wired string matching engine has to be offline; thus it
is unable to detect network intrusion or virus during that
period. Hence we resort to memory-based architectures
which support dynamic updates at run time. Like most of
the existing memory-based architectures [4], [8], [12], our
work is based on Aho-Corasick (AC) algorithm [26] for its
ability to provide deterministic throughput. We revisit the
AC algorithm in the next section to unveil the source of
its memory inefficiency which is the key limitation to use
FPGAs for large-scale string matching [11].

B. Revisiting Aho-Corasick Algorithm

Aho-Corasick (AC) algorithm [26] is one of the earli-
est algorithms in multi-pattern string matching. Among all
variants of AC algorithms, AC-DFA is widely adopted for
its deterministic throughput. AC-DFA converts a pattern
set which contains n characters into a deterministic finite
automaton with O(n) states. Once the DFA which can be
stored as a state transition table is built, it reads in the input
stream one character per clock cycle. Each input character
is processed only once and results in exactly one state
transition. Thus it takes O(m) time to process an input
stream consisting of m characters.

Figure 1 shows an example of the AC-DFA construction
for the three patterns: “SHIP”, “HIS” and “IN”. AC-DFA
starts with constructing a trie (we call it AC-trie), where
the root is the default non-matching state. Each pattern to
be matched adds states to the trie, one state per character,
starting at the root and going to the end of the pattern.
The transition edge between two states is stored as a goto
function: g(s1 , c) = s2 , which means state s1 receiving
the character c will switch to state s2 . In the example shown
in Figure 1 (a), g(3, P) = 4.

The AC-trie is then traversed and failure transitions are
added for each state. The failure transition of a state is
used in case the goto function reports fail i.e., the string
matching on the current traversed path is not found. Initially
all nodes have the default failure transitions to the root. But
it is possible that the suffix of the previously matched string

(a) AC-Trie

S H I P
0 1 2 3 4

H

I S
5 6 7

I

N
8 9

(b) Adding Failure Transitions

S H I P
0 1 2 3 4

H

I S
5 6 7

I

N
8 9

(c) Changing to a DFA

S H I P
0 1 2 3 4

H S

I S
5 6 7

N

I
N

8 9

(d) Final DFA

0 1 2 3 4

5 6 7

8 9

Figure 1. Constructing the AC-DFA for the pattern set: {SHIP, HIS, IN}.

is the prefix of another string in the trie. Hence the failure
transitions are updated to reuse the information associated
with the last input characters (suffix) to recognize patterns
which begin with that suffix, without restarting from the
root. To reuse as much history information as possible, the
failure transition of a node (denoted N 1) is from it to such a
node (denoted N 2) that the path from the root to N 2 is the

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

12 ISSN : 0975-8283

longest prefix equal to the suffix ending at N 1. The failure
transitions are represented as f ailure functions: f (s1) = s2
indicating there is a failure transition from state s1 to state
s2 , and we define s2 as the failure state of s1 . Taking Figure
1 (b) as an example, two prefixes “HI” and “I” are both the
suffixes of “SHI”, i.e., both states 6 and 8 are the candidates
for the failure state of state 3. But since “HI” is longer, the
failure transition of state 3 is to state 6, i.e. f (3) = 6.

The AC-trie with failure transitions (we call it AC-fail)
is not a DFA yet, since an input character may invoke
multiple failure transitions. For example in Figure 1 (b),
when state 3 receives the character “N”, its own goto
function will report fail. Then, via its failure transition, state
3 transits to state 6 which will check its goto function to
see if the character “N” can be accepted. Since state 6’s
goto function still reports fail, state 6 has to consult its
failure function which directs it to state 8. Finally state
8 accepts “N” and transits to state 9. In other words, it
takes 2 failure transitions and 1 goto transition for the input
character “N” to be accepted. To convert the AC-fail into
a DFA, Aho and Corasick [26] propose to combine the
failure function with the goto function to obtain next-move
functions: δ(s1 , c) = s2 , which means state s1 receiving
the character c will switch to state s2 . In the above
example, δ(3, N) = δ(f (3) = 6, N) = δ(f (6) = 8, N)
= 9, as shown in Figure 1 (c).

Figure 1 (d) shows the complete DFA after adding all
transitions. For the sake of readability, we do not show the
default transitions to the root and remove all the labels on the
transitions. Unlike in a AC-fail, one character from the input
stream results in exactly one transition in a AC-DFA. But
the cost is that the memory requirement becomes higher due
to the increasing number of transition edges. For example,
state 3 in Figure 1 (d) will have 6 transitions, while it has
only 2 transitions in Figure 1 (b). Such an increase in the
number of transitions is caused by transition duplication due
to the combination of the failure transitions with the goto
transitions. For example, since f (3) = 6, f (f (3)) = 8,
f (f (f (3))) = 0, the goto transitions of states 6, 8, 0 may
be all copied to state 3.

Now we have the following definitions which will be used
in the rest of this paper:

• The depth of a state in a AC-DFA is the directed
distance from the root to that state. For example, the
depth of state 6 in Figure 1 (d) is 2. The depth of the
root is always zero.

• The ith level of a AC-DFA includes all the states whose
depth is i, i = 0, 1, · · ·. For example in Figure 1
(d), states 1, 5, 8 are all in level 1.

• The depth of a AC-DFA, denoted L, is defined as
the number of distinct levels (excluding level 0) in
the AC-DFA. According to the AC-DFA construction
procedure, the depth of a AC-DFA is equal to the length
of the longest pattern contained in the AC-DFA.

• In a AC-DFA, the transition between states is repre-
sented as a directed edge from one state to another.
The two terms “transition” and “edge” are used inter-
changeably within this paper.

• The transitions generated by the goto functions are
called the forward transitions. A forward transition
is always from a state in level i to another state in
level i + 1, i = 0, 1, · · · , L − 1. For example, the
transitions shown in solid lines in Figure 1 (d) are
forward transitions.

• Apart from the forward transitions, the rest of the
transitions in a AC-DFA are called the cross transitions.
A cross transition is always from a state in level i to
another state in level j where j ≤ i, i, j = 0, 1, · · · , L.

C. Reducing AC-DFA Memory Requirement

Currently there are two general approaches to reduce
the memory requirement of AC-DFA. One is to minimize
the number of states and the other is to minimize the
number of transitions. In most cases these two approaches
are orthogonal to each other and can be used together to
achieve higher performance.

Lin et al. [27] exploit the similarity between different
states in a AC-DFA. The number of states is reduced
by merging pseudo-equivalent states while maintaining the
correctness of string matching. But the memory reduction
achieved depends on the characteristics of the pattern set
and is quite limited (e.g. 29% memory reduction is achieved
for 1,595 Snort string patterns [27]).

Alicherry et al. [5] divide each pattern into W -byte
blocks which are then used to construct a AC-DFA. This
results in a “compressed” AC-DFA with fewer states and
transitions. Meanwhile, the throughput can be improved by
W times by running W instances of the AC-DFA in parallel,
each of which accepts the same input data stream with an
one-character offset (to ensure that no pattern is missed).
However, since their architecture is based on ternary content
addressable memory (TCAM), the improvements in memory
requirement and throughput will be partially offset by the
high cost of TCAM [3].

As pointed out in [12], there is very little space to reduce
the number of states. Hence a large body of work on
memory-efficient string matching is to reduce the number of
transitions. Tan et al. [20] propose the bit-split architecture
to split a full AC-DFA into several partial state machines
(PSM), each accepting a small portion (1 or 2 bits) of the
input as transition labels. A partial match vector (PMV),
one bit per pattern, is maintained at every state in the
PSM to map the state to a set of possible matches. At
every clock cycle, the PMVs from all PSMs are bitwise
AND-ed to generate a full match vector (FMV) to find the
actual matches. However, there are substantial overheads in
implementing a large number of PSMs in real hardware, as
shown in [28].

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 13

Lunteren [14] observes that a large fraction of state
transitions are to the root or to the states in level 1. These
transitions can be removed from the original AC-DFA by
using a separate 256-entry on-chip table to keep track of
them [8]. It can be seen later in this paper that such an
idea is actually a special case of our architecture with
H = 1. The number of transitions can be further reduced
by partitioning the pattern set into multiple subsets [14].
But the performance of the partitioning scheme depends
on the characteristics of the pattern set. In addition to
[14], Song et al. [8] reduce more transitions by adding
one buffer to “cache” the previous state. But it requires a
dual-port memory to be accessed by both the cached state
and the current state in parallel. The effective throughput
is one character per clock cycle, which halves the potential
throughput of using dual-port memory.

It is not hard to see, the number of forward transitions in a
AC-DFA with n states is always n + 1. Hence there is little
room to reduce the number of forward transitions. Some
recent work [3], [4] proposes to incorporate the pipeline
architecture to remove all cross transition edges of a AC-
DFA. Instead of being converted into a DFA, the AC-trie is
mapped onto a linear pipeline. Each trie level is mapped
to a stage containing a separate memory block. At each
clock cycle, the input character is carried to all stages
to invoke the state transition in each stage. Meanwhile,
each stage forwards the output state to its next stage. Such
pipelined solutions require a L-stage pipeline for mapping
a L-level AC-trie. But the number of levels in a AC-trie
corresponds to the length of the longest pattern. As we can
see later in Figure 4, the length of the patterns in both Snort
and ClamAV can be very large, making those pipelined
solutions impractical to handle long patterns. Yang et al.
[4] limit the pattern length to be smaller than 64. Pao et
al. [3] propose to partition the long patterns into segments.

• The depth of a pipeline, denoted H , is the number of
stages in the pipeline.

• When the goto function of a state receiving a character
reports fail, we call the state is failing.

• When a state is failing, it means failure to match the
patterns whose prefix corresponds to the path from the
root to that state. We call there is a failed matching.

A. Correctness

In the original AC-DFA, the underlying system model is
using a single memory block which contains only one active
state at a time, as shown in Figure 2 (a). This single state
has to keep track of all information, and attempts to reuse as
much history information as possible for matching another
pattern when the current matching becomes failed. In con-
trast, given a AC-DFA with L levels, our pipelining (shown
in Figure 2 (b)) is to map the states in level i of the AC-
DFA to the ith stage of a linear pipeline, i = 0, 1, · · · , H − 1
where H is the pipeline depth and H ≤ L. The remaining
levels of the AC-DFA are placed in another (single) memory
(denoted AC-remain). When H = 1, the model becomes
identical to that in [14] which employs a separate table to
handle all transitions at the root. When H = L, AC-remain
contains no state; we call such a model the fully pipelined
AC-DFA, which has been exploited in previous pipelined
solutions [4]. This paper focuses mainly on the partially
pipelined AC-DFA where 1 < H < L. Since each memory
block can have one active state, H stages and AC-remain
can maintain up to H + 1 active states simultaneously. At
each clock cycle, the input character is delivered to AC-
remain and all the stages to invoke possibly multiple state
transitions in parallel.

Each segment is matched in the pipeline and the segment
IDs are used to build a high-level DFA for matching the
entire pattern. Several small tables are needed to take care
of the fragmentation when the string is matched in the
middle of a segment. Such a solution complicates the overall
architecture and is hard to be extended for supporting multi-
character input per clock cycle to achieve high throughput.
Furthermore, [3] considers only the ASCII characters, which

Input

Input

character

AC-DFA

(a)

Current

state

makes their results less interesting for DPI systems.

III. SCALABLE PIPELINE : FEW STAG E S A RE SU FFICI E N T

Existing pipelined solutions aim to eliminate all cross
transition edges in a AC-DFA. But this results in a deep and

character Level
0

Level
1

(b)

Level
H-1

AC-
remain

unscalable pipeline. Our motivation is to find the minimal
pipeline depth while removing the majority of the cross
transition edges. At first, we present a formal proof for
the effectiveness of such pipelined solutions. We use the
following definitions:

Figure 2. System models for (a) traditional AC-DFA (b) (partially)
pipelined AC-DFA

Since the cross transitions in a AC-DFA are generated
based on failure transitions, we first discuss why the above

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

14 ISSN : 0975-8283

pipelining can help remove the failure transitions in a AC-
fail (i.e. a AC-trie with failure transitions added). Given a
AC-fail with L levels, a pipeline with H (H ≤ L) stages
can be built based on the above model shown in Figure 2
(b). It has following properties:

Lemma 1: K -character (K <= H) prefixes of patterns
are matched in the first K stages.

Proof: The first K stages store actually a K -level trie.
The problem is reduced to prefix matching. Hence the lemma
is proved.

Theorem 1: All failure transitions in AC-remain to states
in levels 0, 1, · · · , H − 1 can be removed.

Proof: Recall that the failure transitions are added
into a AC-trie for a failed matching to reuse the history
information without restarting from the root. These history
information is the last input characters (suffix) which can
be the prefix of other patterns. Since the states in level i
(i = 0, 1, · · · , L) represent i-character prefix of the patterns,
the failure transitions to those states are used for a failed
matching to reuse the last i input characters.

On the other hand, in a H -stage pipeline, a state in stage
i (i = 0, 1, · · · , H − 1) will be active if and only if the last i
characters match the prefix represented by the current state.
As a result, there is no need for a failed matching in AC-
remain to reuse the last i input characters which have been
matched by the first i stages (Lemma 1).

Stage 0 Stage 1 AC-remain

S H I P

via the forward transition from state 0. Hence state 6 has no
need to record the failure transition to state 8 to reuse the
suffix.

Corollary 1: A pipeline with H stages can remove all
cross transitions to states in levels 0, 1, · · · , H .

Proof: According to the AC-DFA construction proce-
dure, the cross transitions to the root (i.e. the state in level
0) are generated using the failure transitions to the root
and the failure transitions of the root. The cross transitions
to states in level i (i = 1, 2, · · ·) are generated using the
failure transitions to states in level i − 1 and the forward
transitions of the states in level i − 1. In other words, if
s2 = δ(f (s1), c) = root, then Level(s2) = Level(s1) + 1
where Level(s) denotes the level number of state s. Hence,
based on Theorem 1, the corollary is proved.

It is possible that the state of AC-remain is not failing
and at the same time AC-remain receives another non-failing
state from the previous stage. But AC-remain allows only
one active state. To solve the conflict, we claim that,

Theorem 2: AC-remain should keep using its own state
unless (1) the goto function of its state reports fail and (2) a
non-failing state cannot be found via the failure transitions
within the AC-remain.

Proof: As we did in the proof for Theorem 1, we con-
sider the correspondence between AC-fail and the pipelined
AC-DFA. In AC-fail, as long as the goto function of the
current state does not report fail, the state will not consult
the failure function. The failure functions are consulted
recursively until a non-failing state is found. The failure
transitions to states in level i (i = 0, 1, · · ·) will not be taken

0 1 2 3 4

H
I S

5 6 7
I

N
8 9

if there is a failure transition to states in level j (j > i) that
can find a non-failing state.

According to Theorem 1, the AC-remain in the pipelined
AC-DFA keeps the failure transitions only to states in levels
H, H + 1, · · ·. When (1) the state of AC-remain becomes
failing and (2) a failure transition to some state on the top H
levels is needed, the AC-remain will accept the state output
from the previous stage.

Figure 3. Eliminating failure transitions by pipelining (H=2)

Taking Figure 3 as an example where the AC-fail is
mapped onto a 2-stage pipeline, suppose the input stream
is “SHINE”. When state 3 is the current active state of AC-
remain and it reads the input character “N”. This becomes a
failed matching. There are two suffixes that may be reused:
“HI” and “I”. The longer suffix “HI” is preferred at first.
State 6 which represents the prefix “HI”, will be active.
Since state 6 is in the same memory block with state 3, it
will not be active until state 3 encounters a failed matching.
Hence, the failure transition from state 3 to state 6 cannot be
eliminated. Since state 6 still gets a failed matching for the
input character “N”, the suffix of state 6, “I”, which is also
the shorter suffix of state 3, will be used. At this time, state
8 which represents the prefix “I”, has already been activated

B. Analysis of Real-Life Pattern Sets
To validate the effectiveness of the proposed pipelined

solution, we must answer the following two questions:
1) How much of the transitions in a AC-DFA are cross

transitions?
2) How many stages are needed for eliminating most of

the cross transitions?
We use the latest pattern sets from two widely-used open

source DPI systems: Snort [1] and ClamAV [2]. Snort [1] is
a network intrusion detection system and ClamAV [2] is an
anti-virus system. The statistics of the two pattern sets are
shown in Table I. The distribution of the pattern length in
terms of the number of characters is shown in Figure 4.

For each pattern set, we built the AC-DFA and counted
the number of forward transitions and of cross transitions

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 15

forward
cross
total

 forward
cross
total

Snort ClamAV
Version 2.80 0.95.2

Date 2009-04-21 2009-06-16
String patterns 9033 42020
Total # characters 197298 3025497

Aver. pattern length 21.84 72.0
Max. pattern length 232 382
Min. pattern length 1 1

forward
cross
total

forward
cross
total

E

dg
es

of
 p

at
te

rn
s

E

dg
es

E

dg
es

E

dg
es

Table I
PATTERN SETS FROM REAL -LIFE DPI SYSTEMS

Snort

8
10

6
10

ClamAV

10
10

8

10

6

10
4

10
4

10

2
10 2

10

1500

Pattern length distribution

0
10 0

0

1 2 10 0 1 2

Snort
ClamAV

10 10
Stages

10 10 10 10
Stages

Figure 6. Reducing cross transitions by adding stages

1000

500

0
0 40 80 120 >160

Pattern length (# of char)

Figure 4. Pattern length distribution

on each level. The results are shown in Figure 5 where
Logarithmic (base 10) scale is used for both the X-axis and
the Y-axis. We can make the following observations:

• As a whole the cross transitions constitute the majority
of the overall transitions. 99.52% and 99.61% of the
transitions are cross transitions for Snort and ClamAV
pattern sets, respectively.

• For both Snort and ClamAV pattern sets, the cross
transitions dominate the transitions on almost every
level until level 10. After level 10, the number of cross

transitions decreases dramatically and becomes much
smaller than the number of forward transitions.

• For Snort pattern set, there is no cross transition be-
yond level 40. For ClamAV pattern set, the last level
containing cross transitions is level 145. Note that the
maximum pattern length for Snort and ClamAV pattern
sets is 232 and 382, respectively. This indicates that,
even if we want to eliminate all cross transitions, it is
unnecessary to map a L-level AC-trie onto a L-stage
pipeline. The actual pipeline depth needed can be much
smaller.

• For both pattern sets, over 99.9% of the cross transitions
are on the top 10 levels of the AC-DFA.

C. Experimental Results

We conducted additional experiments to determine the
minimal pipeline depth while removing most of the tran-
sitions. We increased the pipeline depth and examined its
impact on the reduction of the number of transitions. As
expected, Figure 6 shows that, a deeper pipeline results
in more reduction in the number of cross transitions. The
majority of transitions becomes the forward transitions when
using more than 8 and 4 stages, for Snort and ClamAV
pattern sets, respectively.

When using a 8-stage pipeline for Snort pattern set,
Snort

8
10

6
10

4
10

ClamAV
10

10

8

10

6

10

99.03% of the overall transitions are removed. For ClamAV
pattern set, a 4-stage pipelines results in 99.58% reduction
in the number of the overall transitions. Hence, a 8-stage
and a 4-stage pipelines are sufficient for Snort and ClamAV
pattern sets, respectively, to reduce the number of overall
transitions by two orders of magnitude.

2
10

0
10 0

1 2 3

4
10

2

10

0

10 0 1 2

IV. SUPPORTING MULTI -CHARACTER INPUT PER
CLOCK CYCLE

Our pipeline architecture is simple and can be used for
any AC-DFA. To further boost the throughput, we apply the

3
10 10 10

Level ID
10 10 10 10

Level ID
10 proposed pipelining scheme to the compressed AC-DFA [5]

which can process W (W ≥ 1) characters per clock cycle.
Figure 5. Number of edges on each level We define W as the input width.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

16 ISSN : 0975-8283

 forward
cross
total

 forward
cross
total

 forward
cross
total

 forward
cross
total

Ed

ge
s

Ed

ge
s

Ed

ge
s

Ed

ge
s

SH IP
0 2 4

HI

S
6 7

IN

9

Figure 7. Compressed AC-trie (W = 2) for the pattern set: {SHIP, HIS,
IN}

Compressed AC-DFA divides each pattern into W -byte

blocks which are used to build the AC-DFA. Figure 7 shows
the compressed AC-trie with W = 2 for the example shown
in Figure 1. To avoid missing matching some patterns, W
instances of the compressed AC-DFA should run in parallel.
Each of them accepts the same input data stream with a
one-character offset. For example, suppose there is an input
stream “HINT”. The first instance of the compressed AC-
DFA reads the input stream as “HI” and “NT”, while the
second instance reads the input stream as “IN” and “T”.
Although the first instance fails to detect the matching

pattern “IN”, the second instance will eventually catch the
matching pattern.

Combining the compressed AC-DFA with the pipelining
scheme can make the pipeline architecture even more scal-
able. A larger W results in a AC-trie with fewer levels,
which can reduce the pipeline depth. We conducted the
experiments on Snort and ClamAV pattern sets with various
W . Figures 8 and 9 show the number of transitions on each
level of the resulting compressed AC-DFA for Snort and
ClamAV pattern sets, respectively. As expected, when W is
larger, the depth of resulting compressed AC-DFA becomes
smaller, and fewer stages are needed to eliminate most of the
cross transitions. Our experiments show that, when W = 8,
a 6-stage pipeline can remove all the cross transitions for
the Snort pattern set.

A deep pipeline requires a large amount of I/O pins as
well as high bandwidth to access external memory. The
above results show that, our pipeline architecture needs only
a small number of stages. And there is a design trade-off
between the pipeline depth and the memory size of the last
stage. Thus it is available to use a limited number of external
memory banks in our architecture to support even larger
pattern sets.

W = 1

10
10

W = 2
10

10

8 8
10 10

6 6

10 10

4 4
10 10

2 2

10 10

0
10

0 1 2
0

10
3 0 1 2 3

10 10 10
Level ID

10 10 10 10 10
Level ID

W = 4

10
10

W = 8
10

10

8 8
10 10

6 6

10 10

4 4
10 10

2 2

10 10

0 0
10 10

0 1 2 0 1 2
10 10

Level ID
10 10 10 10

Level ID

Figure 8. Number of transitions on each level for various input widths (W = 1, 2, 4, 8) (Snort)

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 17

 forward
cross
total

 forward
cross
total

 forward
cross
total

 forward
cross
total

Ed

ge
s

Ed

ge
s

Ed

ge
s

Ed

ge
s

W = 1
10

10
W = 2

10
10

8 8

10 10

6 6
10 10

4 4

10 10

2 2
10 10

0

10
0 1 2

0
10

3 0 1 2 3
10 10 10

Level ID
10 10 10 10 10

Level ID

W = 4
10

10
W = 8

10
10

8 8

10 10

6 6
10 10

4 4

10 10

2 2
10 10

0

10
0 1 2

0
10

3 0 1 2 3
10 10 10

Level ID
10 10 10 10 10

Level ID

Figure 9. Number of transitions on each level for various input widths (W = 1, 2, 4, 8) (ClamAV)

A. Overview

V. HARDWARE ARCHITECTURE next neighboring stage. The last stage storing AC-remain
will ignore the state output from its previous stage unless
its own state becomes fail. As discussed in Section III-A,

By combining the compressed AC-DFA with the pipelin-
ing scheme, we present a multi-pipeline architecture for high
throughput multi-pattern string matching. Figure 10 shows
an example of the architecture. P denotes the number of
pipelines and W the input width. Since dual-port memory
is used in every stage, two different flows can access the
same hardware pipeline in parallel. Hence, the number of
hardware pipelines is half that of the pipelined compressed
AC-DFA. In other words, P = W/2.

As discussed in Section III-A, the AC-DFA is pipelined
by mapping its ith level onto the ith stage, i = 0, 1, · · · , H −
1. H denotes the pipeline depth i.e. the number of stages.
The remaining levels of the AC-DFA, called AC-remain, are
stored in a single memory, as shown in Figure 10.

During each clock cycle, each pipeline receives two W -
character blocks from the input stream. Each W -character
block is sent to all the stages including the last stage
that stores AC-remain. Each stage receives the W -character
block, invokes the state transition by looking up its local
state transition table, and forwards the output state to the

the main function of the previous H stages is to help reuse
the last H − 1 input characters. As long as the last stage
keeps matching the patterns, the information captured in the
previous H stages is redundant.

B. State Transition Table

Like many other work (e.g. [3]–[5], [12], [14]), we store
the state transition table in each stage as a tuple table to
achieve memory efficiency. Figure 11 shows the state tran-
sition table corresponding to the compressed AC-trie shown
in Figure 7. The state transition table can be implemented in
CAM / TCAM [5], as a hashing table [3], [4], [12] or using
some specific search structure e.g. BaRT [14]. Our current
implementation adopts hashing for its high speed and low
cost. The address used to access the state transition table is
generated using hardware hashing [3], [4], [12].

As shown in Figure 11, an input label to be matched
can have less than W characters, which occurs only for the
last label of a pattern. To match such less-than-W -character
labels, we store the label width in terms of the number of

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

18 ISSN : 0975-8283

Current state

Input label / Label width

Next state Matching a

pattern?
0 SH / 2 2 No
2 IP / 2 4 Yes
0 HI / 2 6 No
6 S / 1 7 Yes
0 IN / 2 9 Yes

Input stream

AC-trie
Level 0

AC-trie
Level 1

AC-trie
Level
H-1

AC-

remain

Figure 10. Multi-pipeline architecture for processing multi-character input per clock cycle (P = 2, W = 4)

Figure 11. State transition table for the example shown in Figure 7

characters in the state transition table. When matching the
input stream, the label width is used to generate a mask
vector. The mask vector is then applied for both the input
W -character block and the stored label. The masked values
are compared to determine if there is a match.

VI. PERFORMANCE EVA L UAT I O N

A. FPGA Implementation Results
We implemented our design for various input widths

(W = 2, 4, 8) in Verilog, using Xilinx ISE 10.1 development
tools. The target device was Xilinx Virtex-5 XC5VFX200T
with -2 speed grade. Post place and route results are shown
in Table II. The pipeline depth (H) used for each input
width ensures that over 99.9% of the cross transitions were
removed.

Our architecture exhibited good scalability in terms of
throughput and resource usage. When W was increased
from 2 to 8, the throughput was improved by 3.5× while

throughput improvement. The overall on-chip logic resource
usage was kept low in all of our designs. Even for the largest
design that processes W = 8 characters per clock cycle, only
10% of the on-chip logic resources were used, which left a
large space for incorparating other DPI processing engines
such as packet header classifiers [16] and regular expression
matching engines [17] on the same chip. We expect larger
FPGA devices such as the recent released Xilinx Virtex-6
[24] to support larger input widths (W) to achieve 20+ Gbps
throughput.

B. Performance Comparison
Table III compares our design with the state-of-the-art

solutions for high performance multi-pattern string matching
in DPI systems. To support dynamic updates, only memory-
based string matching architectures are considered for ASIC
and FPGA based solutions. For a fair comparison, the clock
rates of the compared FPGA implementations were scaled
to Xilinx Virtex-5 platforms based on the maximum clock
frequency. The values in parentheses are the original clock
rates reported in those papers. The results of our work is
based on the design for W = 8. Also note that while most
of the results are based on Snort pattern sets, the results of
[9], [19] are based on randomly generated binary patterns.

Considering the time-memory and the time-memory-area
trade-offs in ASIC / FPGA implementation, we define two
new metrics:

T hroughput Ef f iciency1 = (1)
Bytes/char

the slice usage and the BRAM consumption were increased
by just 1.9× and 2.9×, respectively. In other words, our

Ef f iciency2 =
T hroughput

#Slices � Bytes/char
(2)

solution achieved sub-linear scalability, outperforming the
commonly used duplication-based scaling scheme where
the increase in resource requirement is linear with the

According to Table III, our architecture outperformed the
multi-core processor -based solutions and achieved compa-
rable performance to the ASIC-based solution, with respect

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 19

Table II
IMPLEMENTATION RESULTS FOR VARIOUS INPUT WIDTHS

Input width Number of Slices BRAM usage (Kb)

Used Available Utilization Used Available Utilization
Clock rate

(MHz)
Throughput

(Gbps)
W = 2 (P = 1, H = 16) 1,665 5% 3,294 20% 202 3.23
W = 4 (P = 2, H = 8) 2,335 7% 5,472 33% 199 6.38
W = 8 (P = 4, H = 4) 3,168

30,720

10% 9,432

16,416

57% 178 11.4

Table III

PERFORMANCE COMPARISON

Approaches Platforms # of

Patterns
Pattern
length

of
Slices

Bytes
/ char

Clock rate
(MHz)

Throughput
(Gbps)

Efficiency1
(Mbps/Bytes)

Efficiency2
(Kbps/Bytes)

AC-DFA [9] Cell/B.E. 8,400 ≤ 10 NA NA 3200 2.5 NA NA
AC-DFA [19] GeForce 8600GT 4,000 ≤ 25 NA NA 1200 2.3 NA NA

CDFA [8] 0.18μm ASIC 1,785 No limit NA 3.3 763 6.1 1848 NA
Bit-Split [28] FPGA 1316 No limit 21,112 23 220 (200) 1.76 77 3.63
B-FSM [14] FPGA �8000 No limit NA 4.05 138 (125) 2.2 543 NA

Field-Merge [4] FPGA 6944 < 64 12,027 6.33 285 4.56 720 60
Our approach FPGA 9033 No limit 3,168 6.12 178 11.4 1862 588

to the worst-case throughput. Note that even higher clock
rates can be expected when our architecture is implemented
in ASIC. As far as we know, our work is the only real
implementation of memory-based architectures that sustains
over 10 Gbps throughput while supporting more than 9K
string patterns from Snort. Our FPGA design achieved more
than 2× and 9× improvements over the state-of-the-art FPGA
implementations of memory-based string matching engines,
with respect to Ef f iciency1 and Ef f iciency2,
respectively.

VII. CONCLUSION

This paper gave a detailed discussion on employing

pipeline architectures for scalable AC-DFA based multi-
pattern string matching in high-speed DPI systems. We
revisited the AC algorithm and formally proved that a H -
stage linear pipeline can eliminate all the cross transitions
to the top H levels of a AC-DFA. Previous pipelined
solutions can be viewed as the special case when the pipeline
depth is equal to the AC-DFA depth. Simulation using
real-life DPI pattern sets showed that a pipeline with no
more than 8 stages could remove more than 99% of the
overall transitions in a AC-DFA. We further extended the
architecture to support multi-character input per clock cycle
to achieve multiplicative throughput improvement. The post
place and route results of the implementation on a state-
of-the-art FPGA showed that our design sustained over
10 Gbps throughput, while consuming a small amount of
on-chip resources. Desirable scalability was exhibited: s×
throughput improvement required less than s× increase
in resources. The architecture is also available to support
much larger pattern sets by using a limited number of
external memory banks. Our future work includes integrating
the proposed string matching architecture with other DPI

processing engines such as the packet header classifier [16]
and the regular expression matching engine [17].

REFERENCES

[1] Snort: Open source network IDS/IPS, “http://www.snort.org.”

[2] Clam AntiVirus, “http://www.clamav.net.”

[3] D. Pao, W. Lin, and B. Liu, “Pipelined architecture for multi-
string matching,” Computer Architecture Letters, vol. 7, no. 2,
pp. 33–36, Feb. 2008.

[4] Y.-H. E. Yang and V. K. Prasanna, “Memory-

efficient pipelined architecture for large-scale string
matching,” in FCCM 2009. 17th Annual IEEE
Symposium on Field- Programmable Custom Computing
Machines, April 2009.

[5] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High

speed pattern matching for network IDS/IPS,” in ICNP ’06:
Proceedings of the 2006 IEEE International Conference on
Network Protocols. IEEE Computer Society, 2006, pp. 187–
196.

[6] P.-C. Lin, Y.-D. Lin, T.-H. Lee, and Y.-C. Lai, “Using string

matching for deep packet inspection,” Computer, vol. 41,
no. 4, pp. 23–28, April 2008.

[7] M. Crochemore and T. Lecroq, “Sequential multiple string

matching,” in Encyclopedia of Algorithms, M. Y. Kao, Ed.
Berlin: Springer, 2008, pp. 826–829.

[8] T. Song, W. Zhang, D. Wang, and Y. Xue, “A memory

efficient multiple pattern matching architecture for network
security,” in INFOCOM 2008. The 27th Conference on Com-
puter Communications. IEEE, April 2008, pp. 166–170.

[9] D. P. Scarpazza, O. Villa, and F. Petrini, “High-speed string

searching against large dictionaries on the cell/b.e. processor,”
in Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, April 2008, pp. 1–12.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

20 ISSN : 0975-8283

[10] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos, “Gen-
erating realistic workloads for network intrusion detection
systems,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 1, pp.
207–215, 2004.

[11] O. Villa, D. Chavarria, and K. Maschhoff, “Input-

independent, scalable and fast string matching on the Cray
XMT,” in Parallel and Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, April 2009, pp. 1–
12.

[12] N. Hua, H. Song, and T. V. Lakshman, “Variable-stride multi-

pattern matching for scalable deep packet inspection,” in
INFOCOM 2009. The 28th Conference on Computer Com-
munications. IEEE, April 2009.

[13] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,

“De- terministic memory-efficient string matching
algorithms for intrusion detection,” in INFOCOM 2004.
Twenty-third Annu- alJoint Conference of the IEEE
Computer and Communica- tions Societies, vol. 4, March
2004, pp. 2628–2639 vol.4.

[14] J. van Lunteren, “High-performance pattern-matching for

intrusion detection,” in INFOCOM 2006. 25th IEEE Interna-
tional Conference on Computer Communications. Proceed-
ings, April 2006, pp. 1–13.

[15] Z. Baker and V. Prasanna, “A computationally efficient engine

for flexible intrusion detection,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 13, no. 10,
pp.
1179–1189, Oct. 2005.

[16] W. Jiang and V. K. Prasanna, “Field-split parallel architecture

for high performance multi-match packet classification using
FPGAs,” in SPAA ’09: Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures.
ACM, 2009, pp. 188–196.

[17] Y.-H. E. Yang, W. Jiang, and V. K. Prasanna, “Compact

architecture for high-throughput regular expression matching
on FPGA,” in ANCS ’08: Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communi-
cations Systems. ACM, 2008, pp. 30–39.

[18] T. AbuHmed, A. Mohaisen, and D. Nyang, “A survey

on deep packet inspection for intrusion detection systems,”
CoRR, vol. abs/0803.0037, 2008. [Online]. Available:
http://arxiv.org/abs/0803.0037

[19] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos,

and S. Ioannidis, “Gnort: High performance network intrusion
detection using graphics processors,” in RAID ’08: Proceed-
ings of the 11th international symposium on Recent Advances
in Intrusion Detection. Springer-Verlag, 2008, pp. 116–134.

[20] L. Tan and T. Sherwood, “A high throughput string matching

architecture for intrusion detection and prevention,” in ISCA
’05: Proceedings of the 32nd annual international symposium
on Computer Architecture. IEEE Computer Society, 2005,
pp. 112–122.

[21] I. Sourdis, D. N. Pnevmatikatos, and S. Vassiliadis, “Scalable

multigigabit pattern matching for packet inspection,” IEEE
Trans. VLSI Syst., vol. 16, no. 2, pp. 156–166, 2008.

[22] Y. H. Cho and W. H. Mangione-Smith, “Deep network
packet filter design for reconfigurable devices,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 2, pp. 1–26, 2008.

[23] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor,

“Reprogrammable network packet processing on the field pro-
grammable port extender (FPX),” in FPGA ’01: Proceedings
of the 2001 ACM/SIGDA ninth international symposium on
Field programmable gate arrays. ACM, 2001, pp. 87–93.

[24] Xilinx Virtex-6 FPGA Family,

“www.xilinx.com/products/virtex6/.”

[25] P. Moisset, P. Diniz, and J. Park, “Matching and searching

analysis for parallel hardware implementation on FPGAs,”
in FPGA ’01: Proceedings of the 2001 ACM/SIGDA ninth
international symposium on Field programmable gate arrays.
ACM, 2001, pp. 125–133.

[26] A. V. Aho and M. J. Corasick, “Efficient string matching: an

aid to bibliographic search,” Commun. ACM, vol. 18, no. 6,
pp. 333–340, 1975.

[27] C.-H. Lin, Y.-T. Tai, and S.-C. Chang, “Optimization of

pattern matching algorithm for memory based architecture,”
in ANCS ’07: Proceedings of the 3rd ACM/IEEE Symposium
on Architecture for networking and communications systems.
ACM, 2007, pp. 11–16.

[28] H.-J. Jung, Z. Baker, and V. Prasanna, “Performance of FPGA

implementation of bit-split architecture for intrusion detection
systems,” in Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, April 2006, pp. 8 pp.–.

International Journal of Computing Communication and Information System (IJCCIS) Vol. 2 No.1 Jan–June 2011

ISSN : 0975-8283 21

