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Abstract—Multi-pattern string matching remains  a  major 
performance  bottleneck  in  network  intrusion  detection  and 
anti-virus systems for high-speed deep packet inspection (DPI). 
Although  Aho-Corasick  deterministic finite  automaton (AC- 
DFA)  based  solutions produce deterministic throughput and 
are  widely  used  in  today’s  DPI  systems  such  as  Snort  [1] 
and ClamAV [2], the high memory requirement of  AC-DFA 
(due  to  the  large  number  of  state  transitions  in  AC-DFA) 
inhibits  efficient  hardware   implementation  to  achieve  high 
performance. Some  recent work [3], [4] has shown that the 
AC-DFA can be reduced to a character trie that contains only 
the forward transitions by incorporating pipelined processing. 
But they have limitations in either handling  long patterns or 
extensions to support multi-character input per clock cycle to 
achieve high throughput. This  paper generalizes the problem 
and proves formally  that  a linear pipeline with H  stages can 
remove  all  cross  transitions  to  the  top  H   levels  of  a  AC- 
DFA.  A novel and scalable pipeline architecture for memory- 
efficient multi-pattern string matching is then  presented. The 
architecture can be easily extended to support multi-character 
input per clock cycle by  mapping a compressed AC-DFA [5] 
onto multiple  pipelines. Simulation using Snort and ClamAV 
pattern  sets shows that a 8-stage pipeline can remove more 
than  99%  of  the  transitions  in  the  original  AC-DFA.  The 
implementation on a state-of-the-art  field  programmable gate 
array (FPGA) shows that our architecture can store on a single 
FPGA  device  the  full  set  of  string patterns from  the  latest 
Snort rule set.  Our FPGA implementation sustains 10+ Gbps 
throughput, while consuming a small amount of on-chip logic 
resources. Also desirable scalability is  achieved: the increase 
in resource requirement of our  solution is sub-linear with the 
throughput improvement. 
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I.  INTRODUCTION  

Deep  packet  inspection  (DPI)  systems  (e.g.  Snort  [1] 
and ClamAV [2]) are an effective mechanism for detecting 
various network threats such as intrusion, virus and spam. 
The functions of DPI systems rely on multi-pattern string 
matching which scans the input stream to find all occur- 
rences  of a predefined set of string-based patterns rather 
than a single pattern [6], [7]. Due to the explosive growth 
of network traffic, multi-pattern string matching has been a 
major performance bottleneck in DPI systems which have 

to scan the incoming traffic in real time on fast links (e.g. 
10 Gbps Ethernet and beyond) [8], [9]. For example, it has 
been  reported that the string matching time accounts for 
40% to 70% of the Snort running time [10]. Some existing 
solutions  employ  a  number  of  identical  instances of  the 
basic engine to process multiple input streams so that the 
aggregate throughput is increased [9], [11]. But it remains 
a  challenge to  improve the  per-stream  throughput as  the 
worst case when there is only one single stream. Though 
it is possible to split a stream into several sub-streams with 
partial overlap among the sub-streams, additional complexity 
is introduced in scheduling, buffering, and ordering [12]. 
Simple and efficient hardware-based multi-pattern string 
matching engines become a necessity for high-speed DPI 
systems [6]. However, following requirements must be met 
for the hardware-based solutions to be efficient and practical: 

1) Deterministic throughput: To keep the DPI system it- 
self to be robust, the string matching engine should preserve 
high  throughput independent of the characteristics of the 
input stream or of the pattern set [13], [14]. Aho-Corasick 
deterministic finite automaton (AC-DFA) based solutions are 
thus preferred over those heuristic-based schemes [15] in 
most of today’s string matching engines, as the worst-case 
processing time complexity of AC-DFA is linear with the 
length of the input stream [6]. 

2) Low  memory  requirement:  The  size  of  the  pattern 
sets  in  many  DPI  systems  is  increasing  rapidly.  Those 
large pattern sets can require enormous amount of memory, 
which has to be placed off-chip. The low speed to access 
large (external) memory becomes a major bottleneck of the 
string matching engine. Hence it has recently been an active 
research topic to reduce the memory requirement for AC- 
DFA so that it can be fit in the on-chip memory to minimize 
the memory access time [14]. 

3) Dynamic update: Since the pattern set in DPI systems 
is frequently updated (by adding or removing patterns), the 
multi-pattern string matching engine should support dynamic 
updates without major performance degradation. Such a 
requirement can be very critical for some urgent events such
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as a new virus breakout. Hence memory-based architectures 
are usually preferred over purely logic-based solutions [15]. 

4) Supporting all types of strings: The string patterns in 
DPI systems such as Snort and ClamAV are specified not 
only in ASCII or English alphabet, but also as binary or 
hexadecimal strings. This results in a larger problem space 
than the traditional string matching problem, since each 
character can represent 256 distinct values. As a result, those 
schemes  to reduce the memory requirement by character 
encoding such as converting all characters into lower cases 
[3] become infeasible or less effective for DPI systems. 

5) Implementation cost: When implemented in hardware, 
the overall resource usage of the string matching engine 
should  be  predictable and  minimized. A  string matching 
engine usually operates together with other DPI processing 
engines such as the packet header classifier [16] and regular 
expression matching engine [17] on the same chip. High 
implementation cost can affect the practical performance [6] 
and limit the scalability of the overall system. 

To  the  best  of  our  knowledge,  none  of  the  existing 
hardware-based solutions has met all the above require- 
ments. Taking advantage of pipelining and parallelism, this 
paper proposes a memory-based multi-pipeline architecture 
for high-speed, low-cost multi-pattern string matching. We 
make the following contributions: 

•  Motivated by recent work on using pipelining to reduce 
the transition edges in a AC-DFA [3], [4], we generalize 
the problems and prove formally that a linear pipeline 
with 0 < H ≤ L stages where L denotes the maximum 
pattern length, can remove all cross transitions to the 
top  H  levels  of  a  AC-DFA.  Experiments with real- 
life pattern sets show that most of the cross-transitions 
arrive at the first few characters of the patterns which 
can be sufficiently removed by setting H  = 8. Unlike 
the previous pipelined solutions [4], our work removes 
the limitation of the pattern length that is supported. 

•  Our pipeline architecture is simple and is easily exten- 
sible to support multi-character input per clock cycle 
by mapping a compressed AC-DFA [5] onto multiple 
linear pipelines. This leads to multiplicative improve- 
ment in sustained per-stream throughput, while the 
increase in resource requirement is sub-linear with the 
throughput improvement. 

• FPGA implementation results show that, our archi- 
tecture can store on a single FPGA device over 9K 
string patterns from the latest Snort rule set. It sustains 
10+ Gbps throughput, while consuming only 10% of 
the on-chip logic resources. As far as we know, this 
work is the first memory-based FPGA implementation 
for multi-pattern string matching that supports the full 
set of Snort string patterns while sustaining 10+ Gbps 
throughput. 

The rest of the paper is organized as follows. Section II 
gives a brief review of the related work on multi-pattern 

string matching and revisits the AC-DFA algorithm. Section 
III analyzes the effectiveness of pipelining from both theo- 
retical and experimental points of view. Section IV discusses 
the extension to support multi-character input per clock 
cycle.  Section V  presents our multi-pipeline architecture. 
Section VI evaluates the performance of the implementation. 
Section VII concludes the paper. 
 

II.  BACKGROUND  

Pattern (string) matching is a classical problem and has 
been  studied in various contexts [6], [7]. For clarity, we 
define the terminology used throughout this paper: 

•  Pattern / String: pattern matching is a broader problem 
than string matching where the patterns are specified as 
fixed strings. However, in this paper a “pattern” refers 
only to a string-based pattern, and the terms “pattern” 
and “string” will be used interchangeably within this 
paper. 

•  Multi-pattern string matching is a specific type of string 
matching used in DPI systems to search an input stream 
for a set of patterns rather than a single pattern. 

•  Pattern length is defined as the number of 
characters in a pattern. As the basic element of a string, 
each character  consists of  1  byte  i.e.  8  bits,  and  
can  be specified in either ASCII or binary formats. 

•  The size of a pattern set is defined as the number of 
patterns in it. 

 
A. Related Work 

Although string matching is a classic problem for decades, 
multi-pattern string matching has sparked renewed research 
interest  due to  its application in  DPI systems [6]. Some 
excellent  surveys  can  be  found  in  [6],  [18].  Based  on 
the platform for implementation, the state-of-the-art solu- 
tions can be generally divided into three categories: multi- 
core  processor -based [9],  [11],  [19],  application-specific 
integrated  circuit  (ASIC)  -based  [5],  [8],  [12],  [20]  and 
field  programmable  gate  array  (FPGA)  -based  [4],  [15], 
[21], [22] solutions. Each of them has its own pros and 
cons. Advanced multi-core processor -based solutions [9], 
[11], [19] have recently stepped in as a major player for 
high performance string matching. They can improve the 
aggregate throughput dramatically by using a large number 
of threads to process multiple input streams in parallel. On 
the other hand, it has been observed that the memory access 
pattern in string matching is irregular [9], [11]. This results 
in  relatively  low  per-stream  throughput  which  is  critical 
for real-time network traffic processing in the worst case. 
Though it is possible to split an input stream into several 
sub-streams with partial overlap among the sub-streams, 
additional complexity is introduced in scheduling, buffering, 
and ordering [12]. ASIC-based solutions [5], [8], [12], [20] 
provide impressive high per-stream throughput while their 
applicability is limited by the high implementation cost and 
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low reprogrammability. Combining the flexibility of soft- 
ware and the near-ASIC performance, FPGA technology has 
long become an attractive option for implementing various 
real-time network processing engines [15], [16], [23]. State- 
of-the-art FPGA devices such as Xilinx Virtex-6 [24] provide 
high clock rate and large amounts of on-chip dual-port 
memory with configurable word width. Hence this paper 
considers FPGA as the target platform for implementation, 
though the proposed architecture can also be implemented 
efficiently in ASIC. 

The  majority  of  existing  FPGA-based string  matching 
engines are based on purely logic [21], [22], [25]. Although 
they provide desirable high performance, it takes consid- 
erable time to resynthesize the design and reprogram the 
FPGA  device.  In  case  of  pattern  updates,  the  hardware- 
wired  string  matching  engine  has  to  be  offline;  thus  it 
is unable to detect network intrusion or virus during that 
period. Hence we resort to memory-based architectures 
which support dynamic updates at run time. Like most of 
the existing memory-based architectures [4], [8], [12], our 
work is based on Aho-Corasick (AC) algorithm [26] for its 
ability to provide deterministic throughput. We revisit the 
AC algorithm in the next section to unveil the source of 
its memory inefficiency which is the key limitation to use 
FPGAs for large-scale string matching [11]. 

 
B. Revisiting Aho-Corasick Algorithm 

Aho-Corasick (AC) algorithm [26] is one of the earli- 
est algorithms in multi-pattern string matching. Among all 
variants of AC algorithms, AC-DFA is widely adopted for 
its  deterministic  throughput.  AC-DFA  converts  a  pattern 
set which contains n  characters into a deterministic finite 
automaton with O(n)  states. Once the DFA which can be 
stored as a state transition table is built, it reads in the input 
stream one character per clock cycle. Each input character 
is processed only once and results in exactly one state 
transition.  Thus  it  takes  O(m)   time  to  process  an  input 
stream consisting of m  characters. 

Figure 1 shows an example of the AC-DFA construction 
for the three patterns: “SHIP”, “HIS” and “IN”. AC-DFA 
starts with constructing a trie (we call it AC-trie), where 
the root is the default non-matching state. Each pattern to 
be matched adds states to the trie, one state per character, 
starting  at the root and going to the end of the pattern. 
The transition edge between two states is stored as a goto 
function: g(s1 , c) = s2 , which means state s1   receiving 
the character c will switch to state s2 . In the example shown 
in Figure 1 (a), g(3, P ) = 4. 

The AC-trie is then traversed and failure transitions are 
added  for  each  state. The  failure  transition of  a  state  is 
used in case the goto function reports fail i.e., the string 
matching on the current traversed path is not found. Initially 
all nodes have the default failure transitions to the root. But 
it is possible that the suffix of the previously matched string 

(a) AC-Trie 
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(b) Adding Failure Transitions 
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(c) Changing to a DFA 
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(d) Final DFA 
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Figure 1.   Constructing the AC-DFA for the pattern set: {SHIP, HIS, IN}. 
 
 
 
is the prefix of another string in the trie. Hence the failure 
transitions are updated to reuse the information associated 
with the last input characters (suffix) to recognize patterns 
which begin with that suffix, without restarting from the 
root. To reuse as much history information as possible, the 
failure transition of a node (denoted N 1) is from it to such a 
node (denoted N 2) that the path from the root to N 2 is the 
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longest prefix equal to the suffix ending at N 1. The failure 
transitions are represented as f ailure  functions: f (s1 ) = s2 
indicating there is a failure transition from state s1   to state 
s2 , and we define s2   as the failure state of s1 . Taking Figure 
1 (b) as an example, two prefixes “HI” and “I” are both the 
suffixes of “SHI”, i.e., both states 6 and 8 are the candidates 
for the failure state of state 3. But since “HI” is longer, the 
failure transition of state 3 is to state 6, i.e. f (3) = 6. 

The AC-trie with failure transitions (we call it AC-fail) 
is not a DFA yet, since an input character may invoke 
multiple failure transitions. For example in Figure 1 (b), 
when  state  3  receives  the  character  “N”,  its  own  goto 
function will report fail. Then, via its failure transition, state 
3 transits to state 6 which will check its goto function to 
see if the character “N” can be accepted. Since state 6’s 
goto  function still reports fail, state 6  has  to  consult its 
failure  function which  directs  it  to  state  8.  Finally  state 
8 accepts “N” and transits to state 9. In other words, it 
takes 2 failure transitions and 1 goto transition for the input 
character “N” to be accepted. To convert the AC-fail into 
a  DFA,  Aho  and  Corasick [26]  propose to  combine the 
failure function with the goto function to obtain next-move 
functions: δ(s1 , c) = s2 , which means state s1   receiving 
the character c will switch to state s2 . In the above  
example, δ(3, N )  = δ(f (3)  = 6, N )  = δ(f (6)  = 8, N )  
= 9, as shown in Figure 1 (c). 

Figure 1 (d) shows the complete DFA after adding all 
transitions. For the sake of readability, we do not show the 
default transitions to the root and remove all the labels on the 
transitions. Unlike in a AC-fail, one character from the input 
stream results in exactly one transition in a AC-DFA. But 
the cost is that the memory requirement becomes higher due 
to the increasing number of transition edges. For example, 
state 3 in Figure 1 (d) will have 6 transitions, while it has 
only 2 transitions in Figure 1 (b). Such an increase in the 
number of transitions is caused by transition duplication due 
to the combination of the failure transitions with the goto 
transitions.  For example, since f (3)  = 6, f (f (3))  = 8, 
f (f (f (3)))  = 0, the goto transitions of states 6, 8, 0 may 
be all copied to state 3. 

Now we have the following definitions which will be used 
in the rest of this paper: 

•  The  depth  of  a  state  in  a  AC-DFA  is  the  directed 
distance from the root to that state. For example, the 
depth of state 6 in Figure 1 (d) is 2. The depth of the 
root is always zero. 

•  The ith level of a AC-DFA includes all the states whose 
depth is i, i = 0, 1, · · ·. For example in Figure 1 
(d), states 1, 5, 8 are all in level 1. 

•  The  depth  of  a  AC-DFA,  denoted  L,  is  defined  as 
the  number of  distinct  levels  (excluding  level  0)  in 
the AC-DFA. According to the AC-DFA construction 
procedure, the depth of a AC-DFA is equal to the length 
of the longest pattern contained in the AC-DFA. 

•  In a AC-DFA, the transition between states is repre- 
sented as a directed edge from one state to another. 
The two terms “transition” and “edge” are used inter- 
changeably within this paper. 

•  The  transitions  generated  by  the  goto  functions  are 
called  the  forward  transitions.  A  forward  transition 
is always from a state in level i  to another state in 
level  i + 1,  i  = 0, 1, · · · , L − 1.  For  example,  the 
transitions shown  in  solid  lines  in  Figure 1  (d)  are 
forward transitions. 

• Apart from the forward transitions, the rest of the 
transitions in a AC-DFA are called the cross transitions. 
A cross transition is always from a state in level i to 
another state in level j where j ≤ i, i, j = 0, 1, · · · , L. 

 
C. Reducing AC-DFA Memory Requirement 

Currently  there  are  two  general  approaches  to  reduce 
the memory requirement of AC-DFA. One is to minimize 
the  number  of  states  and  the  other  is  to  minimize  the 
number of transitions. In most cases these two approaches 
are orthogonal to each other and can be used together to 
achieve higher performance. 

Lin et  al.  [27] exploit  the similarity between different 
states  in  a  AC-DFA.  The  number  of  states  is  reduced 
by merging pseudo-equivalent states while maintaining the 
correctness of string matching. But the memory reduction 
achieved depends on the characteristics of the pattern set 
and is quite limited (e.g. 29% memory reduction is achieved 
for 1,595 Snort string patterns [27]). 

Alicherry  et  al.  [5]  divide  each  pattern  into  W -byte 
blocks which are then used to construct a AC-DFA. This 
results in a “compressed” AC-DFA with fewer states and 
transitions. Meanwhile, the throughput can be improved by 
W times by running W instances of the AC-DFA in parallel, 
each of which accepts the same input data stream with an 
one-character offset (to ensure that no pattern is missed). 
However, since their architecture is based on ternary content 
addressable memory (TCAM), the improvements in memory 
requirement and throughput will be partially offset by the 
high cost of TCAM [3]. 

As pointed out in [12], there is very little space to reduce 
the number of states. Hence a large body of work on 
memory-efficient string matching is to reduce the number of 
transitions. Tan et al. [20] propose the bit-split architecture 
to split a full AC-DFA into several partial state machines 
(PSM), each accepting a small portion (1 or 2 bits) of the 
input as transition labels. A partial match vector (PMV), 
one  bit  per  pattern,  is  maintained  at  every  state  in  the 
PSM  to  map  the  state  to  a  set  of  possible matches. At 
every clock cycle, the PMVs from all PSMs are bitwise 
AND-ed to generate a full match vector (FMV) to find the 
actual matches. However, there are substantial overheads in 
implementing a large number of PSMs in real hardware, as 
shown in [28]. 
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Lunteren [14] observes that a large fraction of state 
transitions are to the root or to the states in level 1. These 
transitions can be removed from the original AC-DFA by 
using a separate 256-entry on-chip table to keep track of 
them [8]. It can be seen later in this paper that such an 
idea  is  actually  a  special  case  of  our  architecture  with 
H  = 1. The number of transitions can be further reduced 
by partitioning the pattern set into multiple subsets [14]. 
But  the  performance of  the  partitioning scheme depends 
on  the  characteristics  of  the  pattern  set.  In  addition  to 
[14],  Song  et  al.  [8]  reduce  more  transitions  by  adding 
one buffer to “cache” the previous state. But it requires a 
dual-port memory to be accessed by both the cached state 
and the current state in parallel. The effective throughput 
is one character per clock cycle, which halves the potential 
throughput of using dual-port memory. 

It is not hard to see, the number of forward transitions in a 
AC-DFA with n states is always n + 1. Hence there is little 
room to reduce the number of forward transitions. Some 
recent  work [3], [4] proposes to incorporate the pipeline 
architecture to remove all cross transition edges of a AC- 
DFA. Instead of being converted into a DFA, the AC-trie is 
mapped onto a linear pipeline. Each trie level is mapped 
to a stage containing a  separate memory block. At each 
clock  cycle,  the  input  character  is  carried  to  all  stages 
to  invoke  the  state  transition  in  each  stage.  Meanwhile, 
each stage forwards the output state to its next stage. Such 
pipelined solutions require a L-stage pipeline for mapping 
a L-level  AC-trie. But the number of levels in a AC-trie 
corresponds to the length of the longest pattern. As we can 
see later in Figure 4, the length of the patterns in both Snort 
and ClamAV can be very large, making those pipelined 
solutions impractical to handle long patterns. Yang et al. 
[4] limit the pattern length to be smaller than 64. Pao et 
al. [3] propose to partition the long patterns into segments. 

•  The depth of a pipeline, denoted H , is the number of 
stages in the pipeline. 

•  When the goto function of a state receiving a character 
reports fail, we call the state is failing. 

•  When a state is failing, it means failure to match the 
patterns whose prefix corresponds to the path from the 
root to that state. We call there is a failed matching. 

 
A. Correctness 

In the original AC-DFA, the underlying system model is 
using a single memory block which contains only one active 
state at a time, as shown in Figure 2 (a). This single state 
has to keep track of all information, and attempts to reuse as 
much history information as possible for matching another 
pattern when the current matching becomes failed. In con- 
trast, given a AC-DFA with L levels, our pipelining (shown 
in Figure 2 (b)) is to map the states in level i of the AC- 
DFA to the ith stage of a linear pipeline, i = 0, 1, · · · , H − 1 
where H  is the pipeline depth and H  ≤ L. The remaining 
levels of the AC-DFA are placed in another (single) memory 
(denoted AC-remain). When H  = 1, the model becomes 
identical to that in [14] which employs a separate table to 
handle all transitions at the root. When H = L, AC-remain 
contains no state; we call such a model the fully pipelined 
AC-DFA, which has been exploited in previous pipelined 
solutions [4]. This paper focuses mainly on the partially 
pipelined AC-DFA where 1 < H < L. Since each memory 
block can have one active state, H  stages and AC-remain 
can maintain up to H + 1 active states simultaneously. At 
each clock cycle, the input character is delivered to AC- 
remain and all the stages to invoke possibly multiple state 
transitions in parallel. 

Each segment is matched in the pipeline and the segment 
IDs are used to build a high-level DFA for matching the 
entire pattern. Several small tables are needed to take care 
of  the  fragmentation when  the  string  is  matched  in  the 
middle of a segment. Such a solution complicates the overall 
architecture and is hard to be extended for supporting multi- 
character input per clock cycle to achieve high throughput. 
Furthermore, [3] considers only the ASCII characters, which 
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makes their results less interesting for DPI systems. 
 

III.  SCALABLE PIPELINE : FEW STAG E S A RE SU FFICI E N T 
 

Existing pipelined solutions aim  to  eliminate all  cross 
transition edges in a AC-DFA. But this results in a deep and 

character Level 
0 

Level 
1 

 
 
 

(b) 

Level 
H-1 
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remain 

unscalable pipeline. Our motivation is to find the minimal 
pipeline  depth while removing  the  majority of  the  cross 
transition  edges.  At  first,  we  present  a  formal  proof  for 
the effectiveness of such pipelined solutions. We use the 
following definitions: 

Figure  2. System  models  for  (a)  traditional  AC-DFA  (b)  (partially) 
pipelined AC-DFA 
 

Since the cross transitions in a AC-DFA are generated 
based on failure transitions, we first discuss why the above 
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pipelining can help remove the failure transitions in a AC- 
fail (i.e. a AC-trie with failure transitions added). Given a 
AC-fail with L  levels, a pipeline with H  (H  ≤ L)  stages 
can be built based on the above model shown in Figure 2 
(b). It has following properties: 

Lemma 1: K -character (K <= H ) prefixes of patterns 
are matched in the first K stages. 

Proof: The first K stages store actually a K -level trie. 
The problem is reduced to prefix matching. Hence the lemma 
is proved. 

Theorem 1: All failure transitions in AC-remain to states 
in levels 0, 1, · · · , H − 1 can be removed. 

Proof:  Recall  that  the  failure  transitions  are  added 
into a AC-trie for a failed matching to reuse the history 
information without restarting from the root. These history 
information is the last input characters (suffix) which can 
be the prefix of other patterns. Since the states in level i 
(i = 0, 1, · · · , L) represent i-character prefix of the patterns, 
the failure transitions to those states are used for a failed 
matching to reuse the last i input characters. 

On the other hand, in a H -stage pipeline, a state in stage 
i (i = 0, 1, · · · , H − 1) will be active if and only if the last i 
characters match the prefix represented by the current state. 
As a result, there is no need for a failed matching in AC- 
remain to reuse the last i input characters which have been 
matched by the first i stages (Lemma 1). 

 
Stage 0 Stage 1 AC-remain 

 
S H I P 

via the forward transition from state 0. Hence state 6 has no 
need to record the failure transition to state 8 to reuse the 
suffix. 

Corollary 1: A pipeline with H  stages can remove all 
cross transitions to states in levels 0, 1, · · · , H . 

Proof: According to the AC-DFA construction proce- 
dure, the cross transitions to the root (i.e. the state in level 
0)  are  generated using the  failure  transitions to  the  root 
and the failure transitions of the root. The cross transitions 
to states in level i  (i  = 1, 2, · · ·) are generated using the 
failure transitions to states in level i − 1 and the forward 
transitions of the states in level i − 1. In other words, if 
s2   = δ(f (s1 ), c) = root, then Level(s2 )  = Level(s1 ) + 1 
where Level(s) denotes the level number of state s. Hence, 
based on Theorem 1, the corollary is proved. 

It is possible that the state of AC-remain is not failing 
and at the same time AC-remain receives another non-failing 
state from the previous stage. But AC-remain allows only 
one active state. To solve the conflict, we claim that, 

Theorem 2: AC-remain should keep using its own state 
unless (1) the goto function of its state reports fail and (2) a 
non-failing state cannot be found via the failure transitions 
within the AC-remain. 

Proof: As we did in the proof for Theorem 1, we con- 
sider the correspondence between AC-fail and the pipelined 
AC-DFA. In AC-fail, as long as the goto function of the 
current state does not report fail, the state will not consult 
the failure function. The failure functions are consulted 
recursively  until a  non-failing state is found. The failure 
transitions to states in level i (i = 0, 1, · · ·) will not be taken 

0 1 2 3 4 
 

H 
I S 

5 6 7 
I 

N 
8 9 

if there is a failure transition to states in level j (j  > i) that 
can find a non-failing state. 

According to Theorem 1, the AC-remain in the pipelined 
AC-DFA keeps the failure transitions only to states in levels 
H, H + 1, · · ·. When (1) the state of AC-remain becomes 
failing and (2) a failure transition to some state on the top H 
levels is needed, the AC-remain will accept the state output 
from the previous stage. 

Figure 3.    Eliminating failure transitions by pipelining (H=2) 
 

Taking Figure 3 as an example where the AC-fail is 
mapped onto a 2-stage pipeline, suppose the input stream 
is “SHINE”. When state 3 is the current active state of AC- 
remain and it reads the input character “N”. This becomes a 
failed matching. There are two suffixes that may be reused: 
“HI” and “I”. The longer suffix “HI” is preferred at first. 
State  6 which represents the prefix “HI”, will be active. 
Since state 6 is in the same memory block with state 3, it 
will not be active until state 3 encounters a failed matching. 
Hence, the failure transition from state 3 to state 6 cannot be 
eliminated. Since state 6 still gets a failed matching for the 
input character “N”, the suffix of state 6, “I”, which is also 
the shorter suffix of state 3, will be used. At this time, state 
8 which represents the prefix “I”, has already been activated 

 

B. Analysis of Real-Life Pattern Sets 
To validate the effectiveness of the proposed pipelined 

solution, we must answer the following two questions: 
1)  How much of the transitions in a AC-DFA are cross 

transitions? 
2)  How many stages are needed for eliminating most of 

the cross transitions? 
We use the latest pattern sets from two widely-used open 

source DPI systems: Snort [1] and ClamAV [2]. Snort [1] is 
a network intrusion detection system and ClamAV [2] is an 
anti-virus system. The statistics of the two pattern sets are 
shown in Table I. The distribution of the pattern length in 
terms of the number of characters is shown in Figure 4. 

For each pattern set, we built the AC-DFA and counted 
the number of forward transitions and of cross transitions 
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Table I 
PATTERN SETS  FROM REAL -LIFE  DPI SYSTEMS  
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Figure 6.    Reducing cross transitions by adding stages 
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Figure 4.    Pattern length distribution 
 
 
on each level.  The results are shown  in  Figure 5  where 
Logarithmic (base 10) scale is used for both the X-axis and 
the Y-axis. We can make the following observations: 

•  As a whole the cross transitions constitute the majority 
of the overall transitions. 99.52% and 99.61% of the 
transitions are cross transitions for Snort and ClamAV 
pattern sets, respectively. 

• For both Snort and ClamAV pattern sets, the cross 
transitions  dominate  the  transitions on  almost  every 
level until level 10. After level 10, the number of cross 

 
transitions decreases dramatically and becomes much 
smaller than the number of forward transitions. 

•  For Snort pattern set, there is no cross transition be- 
yond level 40. For ClamAV pattern set, the last level 
containing cross transitions is level 145. Note that the 
maximum pattern length for Snort and ClamAV pattern 
sets is 232 and 382, respectively. This indicates that, 
even if we want to eliminate all cross transitions, it is 
unnecessary to map a L-level  AC-trie onto a L-stage 
pipeline. The actual pipeline depth needed can be much 
smaller. 

•  For both pattern sets, over 99.9% of the cross transitions 
are on the top 10 levels of the AC-DFA. 

 
C. Experimental Results 

We  conducted additional experiments  to  determine the 
minimal pipeline depth while removing most of the tran- 
sitions. We increased the pipeline depth and examined its 
impact on the reduction of the number of transitions. As 
expected,  Figure  6  shows  that,  a  deeper  pipeline  results 
in more reduction in the number of cross transitions. The 
majority of transitions becomes the forward transitions when 
using  more than 8 and 4 stages, for Snort and ClamAV 
pattern sets, respectively. 

When  using  a  8-stage  pipeline  for  Snort  pattern  set, 
Snort 

8 
10 

 
 

6 
10 

 
 

4 
10 

ClamAV 
10 

10 

 
8 

10 

 
6 

10 

99.03% of the overall transitions are removed. For ClamAV 
pattern set, a 4-stage pipelines results in 99.58% reduction 
in the number of the overall transitions. Hence, a 8-stage 
and a 4-stage pipelines are sufficient for Snort and ClamAV 
pattern sets, respectively, to reduce the number of overall 
transitions by two orders of magnitude. 
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IV.  SUPPORTING MULTI -CHARACTER INPUT PER  
CLOCK CYCLE 

Our pipeline architecture is simple and can be used for 
any AC-DFA. To further boost the throughput, we apply the 

3 
10 10 10 

Level ID 
10 10 10 10 

Level ID 
10 proposed pipelining scheme to the compressed AC-DFA [5] 

which can process W  (W  ≥ 1) characters per clock cycle. 
Figure 5.    Number of edges on each level We define W  as the input width. 
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Figure 7.    Compressed AC-trie (W = 2) for the pattern set: {SHIP, HIS, 
IN} 

 

 
Compressed AC-DFA divides each pattern into W -byte 

blocks which are used to build the AC-DFA. Figure 7 shows 
the compressed AC-trie with W  = 2 for the example shown 
in Figure 1. To avoid missing matching some patterns, W 
instances of the compressed AC-DFA should run in parallel. 
Each of them accepts the same input data stream with a 
one-character offset. For example, suppose there is an input 
stream “HINT”. The first instance of the compressed AC- 
DFA reads the input stream as “HI” and “NT”, while the 
second instance reads the input stream as “IN” and “T”. 
Although  the  first  instance  fails  to  detect  the  matching 

pattern “IN”, the second instance will eventually catch the 
matching pattern. 

Combining the compressed AC-DFA with the pipelining 
scheme can make the pipeline architecture even more scal- 
able. A larger W  results in a AC-trie with fewer levels, 
which can reduce the pipeline depth. We conducted the 
experiments on Snort and ClamAV pattern sets with various 
W . Figures 8 and 9 show the number of transitions on each 
level of the resulting compressed AC-DFA for Snort and 
ClamAV pattern sets, respectively. As expected, when W  is 
larger, the depth of resulting compressed AC-DFA becomes 
smaller, and fewer stages are needed to eliminate most of the 
cross transitions. Our experiments show that, when W  = 8, 
a 6-stage pipeline can remove all the cross transitions for 
the Snort pattern set. 

A deep pipeline requires a large amount of I/O pins as 
well  as  high  bandwidth to  access  external  memory.  The 
above results show that, our pipeline architecture needs only 
a small number of stages. And there is a design trade-off 
between the pipeline depth and the memory size of the last 
stage. Thus it is available to use a limited number of external 
memory banks in our architecture to support even larger 
pattern sets. 
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Figure 8.    Number of transitions on each level for various input widths (W  = 1, 2, 4, 8) (Snort) 
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Figure 9.    Number of transitions on each level for various input widths (W  = 1, 2, 4, 8) (ClamAV) 
 
 
 
 

A. Overview 

V.  HARDWARE ARCHITECTURE next neighboring stage. The last stage storing AC-remain 
will ignore the state output from its previous stage unless 
its own state becomes fail. As discussed in Section III-A, 

By combining the compressed AC-DFA with the pipelin- 
ing scheme, we present a multi-pipeline architecture for high 
throughput multi-pattern string matching. Figure 10 shows 
an example of the architecture. P  denotes the number of 
pipelines and W  the input width. Since dual-port memory 
is used in every stage, two different flows can access the 
same hardware pipeline in parallel. Hence, the number of 
hardware pipelines is half that of the pipelined compressed 
AC-DFA. In other words, P = W/2. 

As discussed in Section III-A, the AC-DFA is pipelined 
by mapping its ith level onto the ith stage, i = 0, 1, · · · , H − 
1. H  denotes the pipeline depth i.e. the number of stages. 
The remaining levels of the AC-DFA, called AC-remain, are 
stored in a single memory, as shown in Figure 10. 

During each clock cycle, each pipeline receives two W - 
character blocks from the input stream. Each W -character 
block  is  sent  to  all  the  stages  including  the  last  stage 
that stores AC-remain. Each stage receives the W -character 
block, invokes the state transition by looking up its local 
state transition table, and forwards the output state to the 

the main function of the previous H  stages is to help reuse 
the last H − 1 input characters. As long as the last stage 
keeps matching the patterns, the information captured in the 
previous H  stages is redundant. 
 
B. State Transition Table 

Like many other work (e.g. [3]–[5], [12], [14]), we store 
the state transition table in each stage as a tuple table to 
achieve memory efficiency. Figure 11 shows the state tran- 
sition table corresponding to the compressed AC-trie shown 
in Figure 7. The state transition table can be implemented in 
CAM / TCAM [5], as a hashing table [3], [4], [12] or using 
some specific search structure e.g. BaRT [14]. Our current 
implementation adopts hashing for its high speed and low 
cost. The address used to access the state transition table is 
generated using hardware hashing [3], [4], [12]. 

As shown in Figure 11, an input label to be matched 
can have less than W  characters, which occurs only for the 
last label of a pattern. To match such less-than-W -character 
labels, we store the label width in terms of the number of 
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Figure 10.    Multi-pipeline architecture for processing multi-character input per clock cycle (P = 2, W = 4) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.    State transition table for the example shown in Figure 7 
 
 
characters in the state transition table. When matching the 
input stream, the label width is used to generate a mask 
vector. The mask vector is then applied for both the input 
W -character block and the stored label. The masked values 
are compared to determine if there is a match. 

 

VI.  PERFORMANCE EVA L UAT I O N 

A. FPGA Implementation Results 
We  implemented  our  design  for  various  input  widths 

(W  = 2, 4, 8) in Verilog, using Xilinx ISE 10.1 development 
tools. The target device was Xilinx Virtex-5 XC5VFX200T 
with -2 speed grade. Post place and route results are shown 
in Table II. The pipeline depth (H ) used for each input 
width ensures that over 99.9% of the cross transitions were 
removed. 

Our architecture exhibited good scalability in terms of 
throughput  and  resource  usage.  When  W   was  increased 
from 2 to 8, the throughput was improved by 3.5× while 

throughput improvement. The overall on-chip logic resource 
usage was kept low in all of our designs. Even for the largest 
design that processes W  = 8 characters per clock cycle, only 
10% of the on-chip logic resources were used, which left a 
large space for incorparating other DPI processing engines 
such as packet header classifiers [16] and regular expression 
matching engines [17] on the same chip. We expect larger 
FPGA devices such as the recent released Xilinx Virtex-6 
[24] to support larger input widths (W ) to achieve 20+ Gbps 
throughput. 
 

B. Performance Comparison 
Table III compares our design with the state-of-the-art 

solutions for high performance multi-pattern string matching 
in DPI systems. To support dynamic updates, only memory- 
based string matching architectures are considered for ASIC 
and FPGA based solutions. For a fair comparison, the clock 
rates of the compared FPGA implementations were scaled 
to Xilinx Virtex-5 platforms based on the maximum clock 
frequency. The values in parentheses are the original clock 
rates reported in those papers. The results of our work is 
based on the design for W  = 8. Also note that while most 
of the results are based on Snort pattern sets, the results of 
[9], [19] are based on randomly generated binary patterns. 

Considering the time-memory and the time-memory-area 
trade-offs in ASIC / FPGA implementation, we define two 
new metrics: 

T hroughput Ef f iciency1 =  (1) 
Bytes/char 

the slice usage and the BRAM consumption were increased 
by just 1.9× and 2.9×,  respectively. In other words, our 

Ef f iciency2 =  
T hroughput 

#Slices � Bytes/char 
(2) 

solution achieved sub-linear scalability, outperforming the 
commonly  used  duplication-based  scaling  scheme  where 
the  increase  in  resource  requirement  is  linear  with  the 

According to Table III, our architecture outperformed the 
multi-core processor -based solutions and achieved compa- 
rable performance to the ASIC-based solution, with respect 
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Table II 
IMPLEMENTATION  RESULTS  FOR  VARIOUS  INPUT  WIDTHS  

 
Input width Number of Slices BRAM usage (Kb) 

Used Available Utilization Used Available Utilization 
Clock rate 

(MHz) 
Throughput 

(Gbps) 
W = 2 (P = 1, H = 16) 1,665 5% 3,294 20% 202 3.23 
W = 4 (P = 2, H = 8) 2,335 7% 5,472 33% 199 6.38 
W = 8 (P = 4, H = 4) 3,168 

 
30,720 

10% 9,432

 
16,416 

57% 178 11.4 
 

 
Table III 

PERFORMANCE  COMPARISON  

 
Approaches Platforms # of 

Patterns 
Pattern 
length 

# of 
Slices 

Bytes 
/ char

Clock rate 
(MHz) 

Throughput 
(Gbps) 

Efficiency1 
(Mbps/Bytes) 

Efficiency2 
(Kbps/Bytes)

AC-DFA [9] Cell/B.E. 8,400 ≤ 10 NA NA 3200 2.5 NA NA 
AC-DFA [19] GeForce 8600GT 4,000 ≤ 25 NA NA 1200 2.3 NA NA 

CDFA [8] 0.18μm ASIC 1,785 No limit NA 3.3 763 6.1 1848 NA 
Bit-Split [28] FPGA 1316 No limit 21,112 23 220 (200) 1.76 77 3.63 
B-FSM [14] FPGA �8000 No limit NA 4.05 138 (125) 2.2 543 NA 

Field-Merge [4] FPGA 6944 <  64 12,027 6.33 285 4.56 720 60 
Our approach FPGA 9033 No limit 3,168 6.12 178 11.4 1862 588 

 
 

to the worst-case throughput. Note that even higher clock 
rates can be expected when our architecture is implemented 
in ASIC. As far as we know, our work is the only real 
implementation of memory-based architectures that sustains 
over 10 Gbps throughput while supporting more than 9K 
string patterns from Snort. Our FPGA design achieved more 
than 2× and 9× improvements over the state-of-the-art FPGA 
implementations of memory-based string matching engines, 
with respect to Ef f iciency1  and Ef f iciency2, 
respectively. 

 
VII.  CONCLUSION  

 
This paper gave a detailed discussion on employing 

pipeline architectures for scalable AC-DFA based multi- 
pattern string matching in high-speed DPI systems. We 
revisited the AC algorithm and formally proved that a H - 
stage linear pipeline can eliminate all the cross transitions 
to  the  top  H   levels  of  a  AC-DFA.  Previous  pipelined 
solutions can be viewed as the special case when the pipeline 
depth  is  equal  to  the  AC-DFA  depth.  Simulation  using 
real-life DPI pattern sets showed that a pipeline with no 
more than 8 stages could remove more than 99% of the 
overall transitions in a AC-DFA. We further extended the 
architecture to support multi-character input per clock cycle 
to achieve multiplicative throughput improvement. The post 
place and route results of the implementation on a state- 
of-the-art  FPGA  showed  that  our  design  sustained  over 
10 Gbps throughput, while consuming a small amount of 
on-chip resources. Desirable scalability was exhibited: s× 
throughput  improvement  required  less  than  s×  increase 
in resources. The architecture is also available to support 
much larger pattern sets by using a limited number of 
external memory banks. Our future work includes integrating 
the proposed string matching architecture with other DPI 

processing engines such as the packet header classifier [16] 
and the regular expression matching engine [17]. 
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